Selecting the few transformed plant cells out of all the plant cells in an explant requires some advance planning. Most foreign DNA constructs introduced into a plant are designed and built to contain additional genes that function as selectable markers or reporter genes. Selectable markers include genes for resistance to antibiotics or herbicides. Plant cells containing and expressing these genes will be tolerant of antibiotics or herbicides added to the plant tissue culture media, while the nontransformed plant cells will be killed off. The surviving cells in the tissue culture media are mostly transformed.
Instead of selectable markers, reporter genes may be used. Reporter genes induce an easily observable trait to transformed plant cells that facilitates the physical isolation of these cells. Reporter genes include beta-glucuronidase, luciferase, and plant pigment genes. Beta-glucuronidase (commonly known as GUS) allows the plant cells expressing this gene to metabolize colorigenic substrates while nontransformed plant cells cannot. To use this test, researchers treat a small amount of plant tissue with the colorigenic chemical substrate. If the cell turns color (blue) it is known to be transformed and expressing the GUS gene. If the cell does not turn color, it probably is not transformed. Another reporter gene is luciferase, an enzyme isolated from fireflies. Luciferase makes plant cells glow in the presence of certain chemicals if the gene is present, hence, transformed cells glow, whereas nontransformed cells do not glow. Plant pigment genes, such as anthocyanin pigment genes, occur naturally in plants and produce pigments that impart color to flowers. Inclusion of these pigment genes as reporter genes will allow transformed plant cells to be selected by their color. Transformed cells have color, while nontransformed cells remain colorless. Both selectable markers and reporter genes allow selection of cells into which genes have been successfully inserted and are operating properly.
See also: Micropropagation, Steps in Genetic Engineering, Novel Products, Public Concern
|